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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Many-body optics 
V. Virtual-mode theory, and phenomenological binding 
energies in the complex-dielectric-constant approximation 

R. K. BULLOUGH 
Department of Mathematics, University of Manchester Institute of Science 
and Technology, P.O. Box No. 88, Sackville Street, Manchester 1, England 
MS.  received 14th Apvil 1970 

Abstract. We show that the one-component virtual-mode theory of the 
previous paper, which is a well-defined translationally invariant many-body 
optical theory of the molecular fluid, can be extended without difficulty to the 
two-component fluid. We infer that the theory of both ‘virtual’ and ‘real’ 
electromagnetic modes developed previously is applicable to fluids with any 
number of components. 

The  dielectric constants ~ i , ~ ( k ,  W) of the virtual-mode theory are independent 
of k at wavelengths long compared with intermolecular correlation lengths. 
We define a complex dielectric constant E(W) equal to these and to the square of 
the transverse refractive index in the long-wavelength low-energy limit. The  
dielectric constantc(w) depends on cluster integrals of all orders: in the strongest 
form of E(W) (valid in the complex-dielectric-constant approximation-c.d.c,a.) 
these integrals depend on w ,  and Im{c(w)} describes the extinction of the 
electromagnetic modes by external scattering. We show that the virtual-mode 
theory in the c.d.c.a. is equivalent as a response function theory to the trans- 
lationally invariant long-wavelength (virtual) photon theory of Dzyaloshinskii 
and others : we derive Dzyaloshinskii’s macroscopic integral equation from the 
microscopic integral equation considered in the three previous papers, I, I11 and 
IV of this series. 

We also consider the weak c.d.c.a. which entirely omits the radiation field 
from the intermolecular interactions of the cluster integrals. We show that the 
prescription of Dzyaloshinskii and others for calculating the free energy of a 
macroscopic translationally invariant dielectric is equivalent in the weak 
c.d.c.a. to the change in free energy on coupling the oscillators of the free 
radiation field to the oscillators of a dielectric coupled by Coulomb interactions 
alone. We suggest that this appealing result is nevertheless incompatible with 
the quantal theory which yields the fundamental integral equation of this series 
of papers. The two theories coincide when but apparently only when both the 
local and Lorentz fields are neglected in the theory. We infer that the prescrip- 
tion of Dzyaloshinskii for the free energy of a real fluid may neglect important 
contributions from thermal fluctuations ; we can conclude that the low-frequency 
dispersion relation does not determine the intermolecular binding energy of a 
molecular Auid to better than a continuum approximation of the type reported 
in part I1 of this series of papers. 

Finally we summarize the results of the three papers 111, IV and V of the 
series. 

1. Introduction 
In  the two previous papers (Bullough 1970 a,b-to be referred to as 111 and IV 

respectively) we developed the theory of the total electromagnetic response function 
for a molecular fluid : we obtained transverse and longitudinal (k, w)-dependent 
dielectric constants but showed that these were sufficient to describe only a part of 
that total response. This part we called the virtual response (longitudinal or trans- 
verse) and we showed that it could be considered to be the whole of the translationally 
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invariant response. Likewise we showed that a theory which ignored all but the 
virtual response to an imposed current distribution was a translationally invariant 
theory with natural normal modes : this theory we called the ‘virtual-mode theory’. 
In  this paper V we examine some consequences of this virtual-mode theory. 

We first extend (in $2) the theory to a two-component system: this is perfectly 
straightforward and the result allows us to regain the two-component dispersion 
relations derived in the first paper of this series (Bullough 1968 a-to be referred to 
as I). 

I n  $3 we next examine the virtual-mode theory in the complex dielectric constant 
approximation (c.d.c.a.). This is a physically important case since it is a natural 
long-wavelength low-energy theory valid whenever k < t-l and k, < 2-l where 1 is an 
intermolecular correlation length. A molecular fluid has a natural k-independent 
frequency-dependent dielectric constant, which we denote by E ( W )  in this case. We 
find we can derive the translationally invariant form of the semi-phenomenological 
integral equation of Dzyaloshinskii et al. (1961) from the virtual-mode theory in the 
c.d.c.a. This integral equation depends on E ( w ) .  

The integral equation of Dzyaloshinskii et al. is an adjunct to the exposition of a 
many-body theory of van der Waals forces which, like the earlier work of Lifshitz 
(1956), recognizes that the individual molecular wave functions are severely distorted 
in a condensed dielectric. The  macroscopic dielectric constant is used as a place for 
concealing this complication. The  work of $3 shows that this is a legitimate point of 
view as far as the response functions are concerned. Dzyaloshinskii et al. explicitly 
focus attention on long-wavelength photon contributions which we must recognize as 
virtual photon contributions and a comparison with the c.d.c.a. is appropriate. 

It does not necessarily follow from this that long-wavelength virtual photon 
contributions to the free energy can be described by the dielectric constant alone. 
Indeed we have already reported (Bullough 1969-to be referred to as 11) a theory of 
van der Waals forces which fits naturally into the many-body optical theory and which 
will be presented in detail later in this series: this theory shows that E ( w ) ,  or the 
refractive index m,(w), is sufficient to determine the bulk binding of a molecular fluid 
in the ‘continuum approximation’ there described (providing the energies of the free 
molecules are also available); but it implicitly suggests that .(U) or mt(w) are 
insufficient for this purpose if any sort of intermolecular correlation, as for example 
in the c.d.c.a., is included. Dzyaloshinskii et al. ‘decorrelate’ their theory by summing 
one selected set of diagrams to all orders arguably in a way which neglects inter- 
molecular corre1ation;Jy they also introduce their coupled photon propagator in a 
semi-phenomenological way. This paper V is a natural place to examine the signifi- 
cance of such assumptions for an arbitrary dielectric by making particular use of the 
virtual-mode theory in the c.d.c.a. ; and this is the problem treated in $4. 

t T h e  structure of this decorrelation is very comparable with the decorrelation of the quantal 
theory we invoke to  reach the classical integral equation of I. In Bullough et al. (1968) we call 
this the polarization diagram approximation (p.d.a.) for reasons which will appear later (see the 
argument reported for the classical integral equation, equation (7), there). Because we appeal 
to  the (quasi-static) Horn-Oppenheimer type of approximation, we need an additional de- 
correlation of intermolecular interactions. As far as the integral equations go this corresponds to 
appealing to  the ‘continuum’ integral equation 1 (2.2) rather than I (2.1) which admits 2-  
particle correlation explicitly and V-particle correlation for all v in most general form. Within 
the structure of the Dzyaloshinskii free-energy theory this continuum integral equation seems 
to be most consistent with the results of that theory although the question of the role of the 
Lorentz field still arises. See $4, 
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In  the following $5 we summarize the three papers 111, IV and V as a whole: they 
have together constituted a connected and necessarily rather mathematical analysis of 
the fundamental integral equation first presented and solved for acceptable mode 
dispersion relations in I. 

2. The total virtual response for a two-component system 
We here derive the proper generalization of the expression IV, (2.11) for the 

dielectric constants El,t(k, U )  when the system is a two-component molecular fluid. 
The  extension of 111, (3.3) to a two-component system is the pair of equations 

{a(U)}-lpa(k, U )  = {P(U))-lpb(k, 
= E(k,  U )  + (ko2U -kk)4n.{naP,(k, U )  + nbPb(k, w)}(k2-kO2)-’ 

X {naPa(k’ ,  U )  + nbPb(k’, U ) }  dk‘. (2.1) 
From this it follows that instead of IV (2.5) for the virtual transverse response we have 
the pair of equations 

4nna(47TnaCl(w))-’pta(k, U )  4nnb(4?inbP(w)}-’Ptb(k,  U )  

= Et,(k, U )  4- (ko2U -kk)  - 4~{naPta(k, 0) n b P t b ( k ,  U ) }  

x (K2-kk0’)- l+4n{naPta(k,  ~ ) + n $ , , ( k ,  U)} .  (2.2) 

The  calculation of the virtual response of a two-component system thus reduces to no 
more than the solution of a pair of simultaneous equations, whilst it is also clear that 
the arguments for the real response of the two-component system are likewise little 
changed. 

We are not interested in the dipole responses of the individual components but 
only in the response in the total transverse dipole moment density 

naPta(k, + nbPtb(k, U ) .  

By including the intermolecular correlation series for the two components (see I $4, 
equations (4.26), (4.27)) we easily find by solving (2.2) for Pta and P t b  that 

... 4n[nacr(U) -k nbP(U) + nanba(W)P(W>{Jtaa(K, U> Et(k, U )  - 1 = 
-eir/3{naa(w) + nbP(U)}-nacx(o)J,aa(k, -nbfi(w)Jtbb(K, U >  

+ Jtbb(k, - Jtab(k - Jtba(k, (cont.) ... - (2.4) 
+ nanb@(U)P(U> detllJta8(k, U)ii 

in which lIJtaB(k, w)il is the 2 x  2 matrix with elements Jtaa(k, U ) ,  Jtab(k, U ) ,  etc. 
The  formal structure thus exactly reproduces the refractive index theory of the two- 
component system of I (4 .24~)  and it follows from (2.3) that 

et(m,koi; U )  = me2(w). 
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Thus the transverse dispersion relations of I (4.24~) are again the surfaces of singularity 
of the response function and the transverse modes whose vectors satisfy this dis- 
persion relation can again be interpreted as normal modes within the virtual mode 
theory, as in IV $2. 

Likewise the total longitudinal virtual response satisfies 

4n{naPla(k, + nbPlb(k, = - l / E L ( k ,  w ) ) E l ( k ,  ( 2 . 5 )  
instead of I11 ( 3 . 1 5 ~ )  and 

. (2.6) + Jlbb(k,  - Jlab(k,  - J lba (k ,  w))l 
+ nanba(w)p(w) detjlJlap(k, w) l i  

(cont.) . . . 
Then the zeros of eL(k,  w )  are the longitudinal dispersion relations of I (4.25~). 

It is now clear that the whole virtual-mode theory generalizes to an arbitrary 
number of components without changing the pseudo-macroscopic forms (2.3) for the 
transverse virtual response and (2.5) for the longitudinal virtual response. I t  is then 
rather clear that the total response functions like IV (2.22) (virtual plus real response) 
which depend on ~ ~ , ~ ( k ,  w )  and m,2(o) and on the surface will be unchanged 
providing we always concern ourselves systematically with the total dipole density 
response. It is only the expressions like (2.4) and (2.6) for the ~ ~ , ~ ( k ,  w )  and the 
dispersion relations themselves which change to accommodate the different correla- 
tions in the different systems. It is then clear that the whole theory of I11 and IV will 
generalize and that we have found from the microscopic theory a formal theory which 
is wholly macroscopic in this sense. 

With this certainty behind us we can return to the virtual-mode theory of the 
one-component system: this theory is translationally invariant in the sense of IV $2 
and macroscopic in the sense of the remarks above. It is not a physical theory in the 
very fact that it is translationally invariant as we discussed in IV $$a and 4; but it is 
not a physical theory also in that it depends on the El,t(k, w )  rather than on the re- 
fractive index m,( w )  or the physical frequency-dependent dielectric constant E( w ) .  
We now show how far the virtual-mode theory is determined by the dispersion of the 
refractive index alone. We exploit the short-range character of the local order in a 
molecular fluid under normal conditions far from any critical point. The  approxima- 
tion which results is the complex dielectric constant approximation (the c.d.c.a.). 
We introduced it briefly in I1 and have referred to it in I11 and IV. It is obviously an 
important physical approximation. 

3. The total virtual response and its long-wavelength limit 
We here exhibit the total virtual response, transverse plus longitudinal, and 

investigate the case when k and K O  are much less than reciprocal cluster correlation 
lengths I-1( = 2n-Z-l). We find that the dielectric constants are then essentially 
independent of k ;  and the most general approximation in which this is so is the 
c.d.c.a. The  c.d.c.a. is a natural and important physical approximation in the descrip- 
tion of external scattering processes (Bullough et al. 1968 and Bullough and Hynne 
1968) ; but its relation as a long-wavelength theory to the work of Dzyaloshinskii 
et aZ.J- was the important question raised in $1. It is this problem we consider here. 

-f The theory is also presented in Abrikosov et al. (1965). We refer to this book as AGD in 
the following. 
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The total virtual response of a one-component molecular fluid excited by fields 
E,(k,  w )  and E,(k,  w )  is given by 111 (3.8) and IV (2.8) as 

(3 -1) 
I n  terms of the total applied field this is compactly 

We also recall the equation, IV (2.11) (or I1 (2) as first reported) for the 
this was 

w ) :  

(3.3) 

I n  this the J,,,(It, w )  are defined in simplest form in I11 (2.6) but, as briefly reported 
already in I1 $2, constitute most generally a multiple scattering cluster expansion 
developed to all orders: first terms of the series are defined by I1 (4a,b) with I1 
(3a,b), but the structure of the series will be developed explicitly and in detail only 
later in this sequence of papers. The  two equations (3.2) and (3.3) summarize the 
total virtual response of a molecular fluid to an external field E(k, U )  : we are confined 
to the virtual-mode theory of IV and if the external field is a free field (light) the total 
virtual response is zero; the real mode response of IV must be included to admit the 
response to light. 

We now consider the long-wavelength approximation where k - l  B 1. In  this case 
J,,,(K, w) ci Jt,[(0, w )  and from the definitions of these quantities (111 (2.6), I1 (3) 
with I1 (4) or I(4.19) with I (4.17) and I(4.18)) we find that 

Jt(0,  w )  = Jl(0, U) 

~ ~ ( 0 ,  w) = ~ ~ ( 0 ,  w )  = ~ ( 0 ,  w )  

so that from (3.3) 

This result conforms with the usual long-wavelength limit of standard many-body 
theory (e.g. Pines 1963-p. 200 for the isotropic solid or Ambegoakar and Kohn 
1960). However, (3.4) remains approximately valid whenever R - l  B F 1 1 2 ~  and I is a 
molecular cluster dimension : we thus have an explicit criterion for the validity of the 
long-wavelength approximation. It is not valid for any It close to a phase transition 
where I is very large, and it is not valid at optical wavelengths for systems of macro- 
molecules, for example. 

We shall now define the frequency-dependent dielectric constant E( w )  to be 
~ ( 0 ,  w )  when in addition K , - l  = w - l c  B I: this has the important property that 

(say). (3 -4) 

E ( 0 ,  w )  = € ( U )  = mt2(w) 

Et(m,kok, 0) = m+J) 

(3.5) 
in the same approximation: otherwise the only relationship between m,2(w) and 
Et(k, U )  is 

for all directions 6 and there is no comparable relation between m,2(w) and ~ ~ ( k ,  w ) .  

A 7  
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The result (3.5) is the principal reason for defining El,t(k, w )  in such a way that 
they satisfy (3.3). A consequence of the result is that long-wavelength low-energy 
virtual photon contributions can be described entirely in terms of the refractive index. 
This is the basis of previous phenomenological calculations of things like electron 
stopping power, for which the longitudinal response and El(k, w )  is really needed, and 
of energy loss by Cerenkov radiation, for which Et(k, w )  is really needed. We noted 
this in 11. 

An important feature of this dielectric constant approximation is that at lowest 
order in k,Z it corresponds to replacing the tensor F of I11 (2.3) everywhere in 
Jl,,( 0, w )  by the longitudinal time-like photon propagator 

T(x, x’) = V V r W 1  (3.6) 

which is independent of w (see I (2.8b)): thus this approximation eliminates all 
contributions of the radiation field to the cluster integrals which make up the Jl,,(0, U ) .  

The quantities Jl , t  still depend on w ,  however, because they depend on powers of 
.(U). If the .(U) are real this approximation makes E ( W )  purely real and the relations 
(3.4) and (3.5) certainly hold. It is then possible to introduce a formal complex 
dielectric constant by the substitution w-+(w+iS) with 6 > 0 the usual positive 
infinitesimal. (See below I11 (2.2) and the discussion surrounding I (2.3) and (2.5)). 
This substitution maintains the choice of outgoing boundary conditions as causal 
boundary conditions and shows us how to negotiate the passage around any singularity 
of the theory. We shall call this approximation ‘the weak complex dielectric constant 
approximation’ (weak c.d.c.a.) for we introduce a stronger result, the c.d.c.a. proper, 
in a moment. The  weak c.d.c.a. is fundamental to our analysis of the free-energy of a 
molecular fluid in the following $4: we now look at it more closely therefore. 

The replacement of F by T of (3.6) means that the dielectric constant in the weak 
c.d.c.a. is given by 

4nnu(w) 
€(U)-1 = (3.7) 

1 - QT~v. (  U )  - na( U )  J( U )  

where (cf. I (2.3), (2.4) and (2.5)) 

a(w) = e2m,-1Cf,{w,2-(w+iS)2}-1, S > O (3.8) 
S 

and ncr(w)J(w) is a power series in na(w)  with coefficients which are diagonal 
components of the tensors 

Jl(w) T(x, X’){g(y)- 1) dx’ (3 .94 s 
+ n - 1 S ( x -  x”)g(x, x’)} (3.9b) 

etc.? 
Because .(w) is invariant under U+-  w ,  i-t- i, E ( W )  is also. Further because 

.(U) is real and satisfies .(U) = .(-CO) on the imaginary w axis, ~ ( w )  also does so 

t cf. I (4.4) and I (4.18), and I1 (4a) and I1 (4b).  
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there. Thus in the weak c.d.c.a. 

e(i7) = e( - i7) for all real 7. (3.10) 

This result is essential to the argument of the following $4. It does not hold if the 
w-dependence of the tensors F is included. 

There is a less artificial procedure for introducing a complex dielectric constant 
~ ( w ) .  This is a natural physically based approximation in the microscopic theory, 
which retains outgoing boundary conditions, does not affect (3.4) and (3.5), and makes 
E(W) complex. We observe from I11 (2.3) (or more immediately from I (2.8a)) that 

F(r, U )  N ( V ~ r - 1 + r - 3 0 ( k o 2 r 2 ) } + i k 0 3 ( + U  +O(ko2r2)} .  

The approximation we use is therefore to replace F( r,  w )  by 

F(r, U )  N VV7r-l ++ikO3U (3.11) 

at every place in J,,,(O, w ) :  equations (3.4) and (3.5) still hold. It is this approximation 
we call the complex dielectric constant approximation proper (the c.d.c.a.). It 
appears to be the essential approximation in relating the microscopic optical scattering 
theory to phenomenological scattering theory (Bullough e t  al. 1968 and Bullough and 
Hynne 1968): it contains within it but is less drastic than both the weak c.d.c.a.t and 
our interpretation of the long-wavelength virtual photon approximation for the free 
energy of Dzyaloshinskii et al. (1961); so it is most plainly an important physical 
approximation of the microscopic theory. 

Because the w-dependent term in (3.11) is odd in w the relation (3.10) valid in the 
weak c.d.c.a. does not hold in the c.d.c.a. itself. This is associated with the fact that 
the c.d.c.a. retains most of the external optical scattering whilst the weak c.d.c.a. does 
not. Thus the c.d.c.a. will describe external scattering processes in the response 
functions; but the weak c.d.c.a. should be a nearer approach to a normal-mode theory 
and be important in a binding energy theory: this argument is consistent with that of 
the following $4 although it is in fact possible to use F itself in the dielectric constants 

w )  and compute from these a binding energy as we showed in 11. I n  this $3 we 
now develop the response theory based on the approximation (3.11) of the c.d.c.a. 
itself. 

I n  the c.d.c.a. (3.2) is . ,  

b n P ( k ,  w )  = { € ( U )  - 1) k 2 - k o 2  )(U -)&I .E(k,  w )  (3.12) 

with (3.5) valid. An interesting identity which is useful in later work$ is 

(3.13a) 
1 et(k, w)kO2U -kk - (U - )6kko2 

k 2 - c t ( k ,  w)ko2 - { k2--Et(k, w)ko2 

1 (.(w)k02U -kk + RL) . 
E( w )  k2 - €( w)ko2 

(3.13b) 

By using the approximate form (3.13b) of the identity (3.13a) the response relation 

f Although the weak c.d.c.a. is a more drastic, i.e. stronger approximation than the c.d.c.a. 
itself, it is a weaker result: hence the nomenclature. 

$ See already the screened binding energy results I1 (12) and I1 (14) which depend on 
(3.1 3 b) , 
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(3.12) can be put in the form 

kk K 2  (A2 - K O 2 )  (e(w)Ko2U -kk}  
477nP(k, U )  = { € ( U )  - l }  ] . E @ ,  U ) .  (3.14) 

Since we are considering the virtual response we can ignore all contributions from 
the surface of V.  In  this case the following Fourier transforms hold : 

(3.15a) 

1 
+-+ F(r, U )  E - {VV + m~(o)Koz~}{exp(im,(w)kor)/r} 

(3.15b) m , 2 ( 4  

47 

€ ( U ) - 1  €(U)- - l  
++- W). 477 477 

( 3 . 1 5 ~ )  

For (3.156) we use (3.5): we then recognize a screened dipole photon propagator 
F( r ,  U )  which we have used in the theory of scattering from molecular fluids already 
and derived by other means (Bullough 1965, 1967). Implicitly we cut off both K and 
K O  at radius E-l: then for example the S( r )  have widths of the order of 1 corresponding 
to a resolving power of about 1. Otherwise the response (3 .15~)  is a strictly local 
response. 

I 

From (3.15) the response relation (3.14) is 

€ ( U )  - 1 
47nP(x,  U )  = - 1 - ( 0 2 + K o 2 ) ~ ( x ,  x’;  U )  . E ( $ ’ ,  U )  dx’ 

477kO2 all space 

€ ( U )  - 1 
(3.16) 

. .  
Since, when (3.5) holds, 

- (P+ko2)F(x ,  x’; U )  = k 0 2 { € ( W ) -  l } F + ~ € - ~ ( V V + € K o ~ U ) S ( ~ - ~ ’ )  

we can reduce (3.16) to the very striking form? 

(3.17) 

(3.18) 
This is not an integral equation but it is nonetheless worth comparing it with the 
fundamental integral equation I11 (2.1) from which we started in the case when 
g(r) E 1. (This is the integral equation of I (2.2).) l3y (3.3) correlation functions of all 
orders are now concealed in .(U) and thus also in F. 

A fundamental assumption of the argument is that all the relevant integrals exist ; 
of course this is already implicitly assumed for the Fourier transforms (3.15a,b). 
However, tensor integrals of this type may exist only in the generalized function 

t All integrals in the translationally invariant virtual-mode theory are over all space and we 
do not indicate this explicitly after (3.18). 
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sense of IV (4.8). In  the present context we therefore write, for example, 

1 F(x, x’; w )  exp{ - ik . (x’- x)} dx’ = F(x, x’; w )  exp{ - ik . (x’- x)} dx’ Lv- 
+ f g ( x , x ’ ; w ) e x p { - i k . ( x ’ - x ) ) d x ’  

* v  

The first term on the right-hand side is 

4% mt2k02U -kk 4% 
- +- U 
m: k2-m:ko2 3m,2 

(3.19) 

(3.20) 

when o is a small sphere about x. We interpret the second integral as in IV (4.8) by 

/ v ? ( ~ , x ‘ ; ~ ) e x p { - i k . ( x ‘ - x ) ) d x ’  = mt-2  

477. 
3mt2 

U - - -- (3.21) 

in the limit when the radius U tends to zero. 
The rather beautiful result (3.18) has an obvious and immediate physical signifi- 

cance which tells us a great deal about the nature of the virtual response in the c.d.c.a. 
The strictly local macroscopic response function (3.15c)which can be most significantly 
exhibited in the form 

E( w )  - 1 - 
US(x-x’)  = IIo(x, x’; w )  (say) 4% 

(3.22) 

determines the response in density of dipole moment at the point x due to a field 
E(x’ ,  w )  at all points x’ by the integral relation 

nP0(x, w )  = J” n,(x,  x’; w )  . E ( % ’ ,  w )  dx‘. (3.23) 

However, in addition the dipoles Po($’, w )  at all points x’ radiate via the macroscopic 
screened dipole photon propagator and enhance the field at x which stimulates the 
response function (3.22) there. The response function (3.22) is strictly local and 
translationally invariant; but the second, radiating term in (3.18) is not local even 
though it is still translationally invariant. Of course the consequences of the break- 
down of translational invariance all lie in the real response which is omitted in the 
virtual-mode theory: the real response is certainly not local and nor is it translation- 
ally invariant, 

The form (3.22) is directly comparable with the translationally invariant polariza- 
tion propagator of Dzyaloshinskii et aZ,(compare e.g. AGD-pp. 259-60, equations 
(29.3) and (29.5)). We can identify no(%, x‘; w )  as the local and translationally 
invariant part of the time Fourier transform of the retarded commutator polarization 
propagator of the coupled many-body systemt 

(3.24) 
t Compare equation (2.5) of I for the free molecule propagators; and see 11, Bullough et al. 

< c \ [ r ( x ,  t ) ,  r(x’ ,  t’)le(t-t’>lc> >a, 

(1968), and Obada and Bullough (1969) for other helpful comparisons. 
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in which O(t) is the unit step function, r(x, t )  is the dipole density operator for the 
coupled system of fluid and field in Heisenberg representation, the states IC )  are 
convenientlyt states of the coupled system and ( ... ),, is an ensemble average 
which is a trace over these states IC) .  This function coincides$ with the thermal Green 
function of Dzyaloshinskii et al. at the set of points io, = 2 n ~ i k ~ T A - l  on the imaginary 
axis in the w plane: v is an integer (AGD, e.g. equations (28.11) and (28.12) and $17) 
and K, is Boltzmann’s constant. The identification (3.24) also establishes a link with 
the microscopic theory as reported in 11. and elsewhere. We now show that (3.18) is 
identical with Dzyaloshinskii’s integral equation and thus establish the equivalence of 
the c.d.c.a. to the long-wavelength (virtual) photon approximation of these authors. 

Equation (3.18) can be written in the form 

~ P ( x ,  w) = J n ( x ,  x’; w )  .E($’, w) dx’. (3.25) 

If (3.18) is true for arbitrary E then it is equivalent to the translationally invariant 
expression 

- - n(x, x’; 0) = n0(x, x‘; w) + 1 J f i , (~ ,  x”; w )  . F(x”, x’”; U )  . fiO(~”’, x’; U )  dx” dx“’. 
(3 -26) 

The Fourier transform of (3.25) is the Fourier transform of (3.18) which is (3.12). By 
manipulating this Fourier transform the following identity can be established : 

[ n(x, x”; w )  , F(x”, x’; w) dx” = J F(x, x“; w )  . r j [ ( ~ ” ,  x’) dx“ 

= 1 F(x, x”;  w) . G,(x”, x’; w )  dx“. (3.27) 

This result is obviously of interest in the interpretation of the non-local response in 
(3.18). If we contract (3.26) with the tensor F(x, x‘; w )  (thefree-field propagator) and 
integrate so that we can use (3.27) and if we then formally ‘cancel’ a factor fi, we get 

- 
F(x, x’; w )  = F(x, x’; w)+  J J F(x, x”; w) . fii,(~’’, x”’; w )  . F(x”’, x’ ;  w) dx” dx”’. 

(3.28) 

With (3.22) and the identification of the thermal and time-dependent Green functionst 
(3.28) is exactly the translationally invariant form of the integral equations of 
Dzyaloshinskii et al. (AGD-p. 259 equation (29211). It may easily be checked as an 
identity by Fourier transformation using (3.22) and (3.1%). 

Equations (3.28) and (3.22) establish the equivalence of the virtual-mode theory in 
the c.d.c.a. with the translationally invariant form of the long-wavelength virtual 
photon approximation of Dzyaloshinskii e t  al. This is the main point of the arguments 

t The trace is independent of the representation: the precise form (3.24) is not. 
f; The thermal Green function g T ( w y )  is identical with the retarded commutator Green 

§ Equation (3.28) is an integral equation for F when I I o  is determined: in the c.d.c.a. no can 

J l  Dzyaloshinskii et al. (and AGD) work in the gauge in which 4 = 0. 

function ’3(i!uv!). - I - 
be evaluated from (3.3) with (3.11) and F is then completely determined by (3.1%). 
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of this section although we are concerned also to examine the physical content of the 
virtual-mode theory and to introduce both the c.d.c.a. and the still more approximate 
‘weak c.d.c.a.’ I n  assessing this connection (3.28) between the work of Dzyaloshinskii 
et al. and the microscopic theory we should again remember the point noted in $1 : the 
Dzyaloshinskii theory starts from an operator form of the Maxwell phenomenological 
equations (AGD-p. 25 1) : the microscopic theory of our papers I-IV starts from the 
microscopic integral equation I11 (2.1). Although this integral equation is a classical 
one it will be derived by microscopic arguments from the quantal theory later in this 
series (see 11). It is nowhere phenomenological. 

We shall now investigate the free energy according to the virtual-mode theory in 
the weak c.d.c.a. adopting the prescription for the free energy given by Dzyaloshinskii 
et al. (AGD-p. 262): there are difficulties in doing this within the c.d.c.a. itself. 
Equation (3.28) valid in the c.d.c.a. is also necessarily valid in the weak c.d.c.a. and it 
still conceals microscopic thermal fluctuations to all orders since, by (3.7), (3.22) does. 
Although (3.28) is then a correct macroscopic description of the dipole response of a 
molecular fluid within the virtual-mode theory in the weak c.d.c.a., and although this 
theory coincides with the Maxwell phenomenological theory as our paper I11 has 
shown, we shall find that the Dzyaloshinskii semi-phenomenological prescription for 
finding the free energy coincides with the microscopic theory reported in I1 only if 
both theories neglect the important contributions of the microscopic thermal fluctua- 
tions to the free energy of the fluid.? 

4. Semi-phenomenological free energy theory 
We take the expression of Abrikosov et al. (AGD-p. 262, equation (30.1)) for the 

free energy F of the molecular fluid. I n  our notation (and choice of electromagnetic 
gauge) this free energy is the sum of a short range part F ,  and an infinite series of 
‘closed-loop’ expressions like this one at order two : 

. F(x”’, x; ilwy[) dx”‘ dx” dx’ dx . (4.1) I 
Each successive term introduces an extra fi,. F in the integrated loop and replaces the 
factor + t by 1/< where 5 is the number of such terms in the loop. 

In  the translationally invariant case the terms of the series simplify considerably. 
For example in (4.1) we can integrate out the &functions in the now local response 
Bo and then we can Fourier transform on x-X’ etc. to get 

We write k, = w,c-l, and recall that w,, 2. i r~k~Th-l .  The  factor of volume V 
appears in the translationally invariant case because in this case only relative co- 
ordinates appear in the integrals like (4.1). Then there is always one ‘spare’ integra- 
tion. Expressions like (4.2) will give the correct contributions to the free energy per 

t The semi-phenomenological theory has the advantage over the virtual-mode theory that it 
is not restricted to translationally invariant systems : we believe that the microscopic theory 
need not be restricted to these either-as long as we include the complicated surface-dependent 
real response. 
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unit volume after dividing by V and setting V+m. This is why the binding free 
energy can actually be very insensitive to surface effects even though the arguments of 
I11 and IV show that the response theory certainly is not. 

It is clear from the example of (4.1) and (4.2) and the prescription of AGD for the 
total free energy from long-wavelength virtual photons AF = F -  F ,  that this is now 

A F  = -gkgTV j - dk [ 2 1 n ( l + ( ~ ( i [ w ~ / ) - l ) k , ~ ( k ~ + k y ” ) - ~ }  
( 2 7 ~ ) ~  y = - m  

(4.3u) 
v =  - m J 

= - & k B T V / -  dk [ 2 1ndetIlU- {c(ilwy[)-l)U (-kV2U-kk)4n 

(27T)3 y = - - 5 0  4n * (k2 + k,2) 

(4.3b) 

For this result we most conveniently split the tensor propagators into 122gitudinal and 
transverse components and use (&): = kk yith trace unity whilst (U - kk)r = (U - kk) 
has trace two: the tensors (U-kk) and kk are of course orthogonal, i.e. (U -kk) 
.kk = 0, the zero tensor. 

If E(i]w,l) - 1 is defined only at the points i[w,l there may be difficulties in finding 
the analytic continuation of that set of quantities (AGD-$17). I n  our case there is no 
problem, For E(i[w,/) can be continued as E(W) in the upper half w plane and, even in 
the c.d.c.a. itself, E ( W )  is defined there by (3.3), or by (3.5) and the dispersion relation 
of I11 (2.5b) for mt2(w) taken in the same approximation. Then for the same reasons 
E(ijw,,j) can be continued in the lower half w plane as E( - w ) .  

An important point now is that although E( w )  and E( - w )  do not coincide across the 
real w axis in the c.d.c.a. itself, they do coincide in the weak c.d.c.a.f This is why we 
shall now choose to work in the weak form of the approximation. 

The  continuation of the photon propagator 4n( -k,2U - kk)(k2 - k y 2 ) - 1  is defined 
from all the points iw, by 4n(ko2U - kk)(k2 - kO2) - l  over the whole w plane. Thus the 
continuation of the integrand in (4.3b) is defined over the whole w plane and we can 
replace (4.3b) by the integral expression 

i m  

A F =  -!I/&/ (In det[lD(w)ll} coth 
4n i - i m  

in which 
.(U) - 1 4n(Ko2U -kk) 

D(w) E U -  ___ U .  
471. k2 - K O 2  

3 (4.4b) 

k, = w c - l  as usual, and the contour leaves all poles of coth(hw/2kBT) on the left. 
Notice that we have appealed to the weak form of the c.d.c.a. in order that .(U) 

can be defined, by (3.7), over the whole of the w plane. The  result (4.4a) is a conse- 
quence of the AGD prescription in the weak c.d.c.a. and is apparently equivalent to it 
only in this or in any still weaker approximation. Indeed there are formidable 
additional difficulties in applying the c.d.c.a. approximation (3.1 1) to the tensor 
F( r ,  w )  at large values of [ w 1 for the imaginary term becomes very large there; and 

t On the real axis w is real and is not to  be interpreted as (w ki8) now. 
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these are not removed, even if they change in character, if we use F( r ,  U )  itself. But 
as II shows these difficulties are connected with the well-known ultraviolet divergences 
of quantum electrodynamics. We would not expect a long-wavelength virtual photon 
theory to be concerned with these since they are associated with distances of the order 
of the Compton wavelength of the electron ( N 2.4 x cm) and shorter; implicitly 
they are concealed in the short-range contribution to the free energy F,. These 
remarks indicate that the weak c.d.c.a. is the proper approximation for comparison 
with the semi-phenomenological theory of free energy due to Dzyaloshinskii e t  al. and 
its formulation as the AGD prescription (4.1). 

The  weak c.d.c.a. has the important property thatt 

E ( w ) - - I  N O ( j ~ j - ~ )  as /wI -+W.  (4.5) 

From this it follows that 

and 
D(w)  N (U - &){1+ O( [ w I - 2 ) }  + M(1+ O( Iw I -')I 

detD(w) N 1+O(Iw]-2) as IwI -+ W .  ( 4 4  

We can now express (4 .4~~)  in the form 

I A F  = K/&[(--g-) 2k,T fa lnsinh(&)[[-&detD(w) {detD(w)}-l 

4~ i - i w  

(4.7) 
by using (4.6) and one integration by parts: although the coth and sinh functions are 
not bounded on the imaginary w axis, (4.6) permits a shift of the contour into the 
right half w plane. T h e  same property also means that the inner square bracket in 
(4.7) is O( / w 1 -3 )  as 1 w I 3 CO whilst In sinh (hw/2kBT) N O( 1 0  I ) .  This now means that 
the contour in (4.7) can be replaced by a simple closed contour in the right half w 
plane which embraces all the singularities of the inner square bracket there. The  cuts 
from the In sinh (hw12kBT) function can be connected outside this contour. 

Before explicitly evaluating this integral in the w plane in (4.7) it will be helpful for 
a later comparison with the details of the comparable argument in the microscopic 
theory already reported in I1 to display (4.7) in a second slightly different form. An 
important property of the ~ ~ , ~ ( l z ,  w )  is that they are invariant under w + - w ,  i --f -i. 
This important property will be discussed in detail later but it is intuitively an obvious 
consequence of the choice of outgoing boundary conditions on the free field Green 
function F in the fundamental integral equation I11 (2.1). Because of this property 
which must then apply also to ~ ( w )  in the c.d.c.a. or in any weaker form of this 
approximation it follows that on the real w axis D(-w) = D*(w) where * denotes 
complex conjugate: the singularities of D(o) lie in the lower half w plane and those of 
the function D*(w) which is the analytic continuation of D*(w) the complex conjugate 
of D(w) on the real w axis lie in the upper half plane, and in the weak c.d.c.a. in 
particular w is to be interpreted as (a+ is) in D(w). It then follows that (4.7) can be 

t Providing we ignore the continuum of ionization levels in the polarizabilities ~ ( w )  : these 
introduce cuts below the real w axis as the singularities of ~ ( w ) ,  but because the Jl,t(O, w) are 
infinite series in the ~ ( w )  the singularities would become more complicated. Thus we assume 
in fact that ~ ( w )  - O ( l ~ l - ~ )  as IwI -+ 00 : then (4.5) follows. 
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written in the alternative form 

AF = E/*[ hi ( 2 ~ ) ~  (y) I,", In(s inh2g)[ (&detD(w)  I (det D(u)}-~ 

1 d 
(dw- 

- --det D*,(u) (det D*(w)}-l dw, 

This form is plainly more comparable with some of the expressions quoted for AF in 
I1 than is (4.17). (And see also Bullough and Obada 1969 a,b). We now return to 
(4.7) and evaluate it.? 

The singularities of the inner square bracket in (4.7) occur at both the zeros and 
the singularities of det D. T o  determine these we examine the solution of the integral 
equation (3.29) for the screened photon propagator F. By Fourier transformation on 
x - x' we find (in obvious notation for the Fourier transform) 

'ko2U -kk 
= 477 ( -) . {D(oJ)}-~. 

k2  - ko2 (4.9) 

From this it follows that the zeros of det D occur at the poles of det 1 1  F(k, w )  1 1  and at the 
zeros of det / I  F(k, w )  Ij = det i14n(Ko2U - kk)(K2- K O 2 ) - l  11 whilst the singularities of D are 
poles at the poles of detlj F(k, w )  11 and the zeros of det 1 1  F(k, U) /I. 

Since 

- ( ~ T ) ~ K ~ ~ [ E ( U ) { ~ ~  - -E(U)KO~)~] -~  (4.10a) 

it has zeros at the polesf of €(U) and poles at the roots of 

Likewise 
k2ko-2 = € ( U )  and E(W) = 0. (4.10b) 

(4.1 la )  det /I F(k, w )  I /  = - ( 4 ~ ) ~ k , ~ ( k ~  - ko2)-2 

with poles at the roots of 

and no zeros. 
k = ko (4.1 lb) 

t T o  the author's knowledge an argument comparable with that from (4.7) to (4.14) below 
was first given in a similar context by McLachlan et al. (1963) : this paper constitutes a beautiful 
exposition of the significance of equivalent oscillators in the intermolecular potential. Mahan 
(1965) pursues the reverse of our argument and uses the zero-point energies of oscillators 
equivalent to the free and Coulomb-coupled excitons of a molecular crystal to compute its 
binding energy. Comparable work has been reported by Nijboer and Renne (1968). Bullough 
and Obada (1969 a,b) report a fundamental justification of Mahan's work valid in the p.d.a. but 
also handle the radiation field. Bullough and Thompson (1970) show how to generalize 
Mahan's argument to include the radiation field by including the Umklapp processes for that 
field. 

$ Provided E ( W )  has no other singularities but poles. We have omitted cuts for large Iw I but 
since the J,,@, w) are infinite series in ~ ( w )  even in the weak c.d.c.a. we cannot expect that this 
is actually so. We therefore assume that E ( W )  is well approximated by a function whose singular- 
ities are nothing but poles and consider this rather than .(a) itself. 
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The first equation in (4.10b) is exactly the dispersion relation for transverse normal 
modes in the weak c.d.c.a.T: the second equation in (4.10b) is just the dispersion 
relation for longitudinal normal modes in the weak c.d.c.a. We denote the transverse 
roots by ws't)(k) and the longitudinal roots by wS(l)(k) (even though the latter do not 
depend on k): we denote the poles of ~ ( w )  - 1 by ws (simply) and these do not 
depend on k. 

If we apply this notation and analysis to (4.7) it now takes the form 

- 3 2 In E( w s )  - 2 In E(ck)] 
in which 

S 

E(x) = 2 sinh(kx/2K,T). 

If we observe that 

In E(.) = (&x/2k,T) + h(1 -eXp( -&X/kBT)) 
= (&x/2kBT)-  lnZ(x) (say) 

we have finally that the free energy per unit volume of the molecular fluid is$ 

(4.12) 

(4.13) 

- 2  In Z(ck) . 11 (4.14) 

Equation (4.14) is the striking result that the free energy of the molecular fluid is 
the difference between the free energies of two sets of oscillators. T h e  first set of 
oscillators is exactly those of the dielectric in the c.d.c.a.: indeed they are just the 
quantized oscillators we would associate with the normal electromagnetic modes of 
the virtual-mode theory according to the discussion of that theory in IV $52 and 4 .  
The second set of oscillators is a combination of the oscillators of the free radiation 
field and of the excitations of the dielectric when it is not coupled to the radiation 
field. 

The  conclusion from (4.14) therefore is that in broad terms the prescription (4.1) 
for the free energy together with the assumption of the weak c.d.c.a. for Et(k, w )  and 

t We show in IV 92 that these are normal-mode dispersion relations in the virtual-mode 
theory which coincide with the dispersion relations for the real modes in the total response 
theory. 

$ Since wit ) (k)  - ck for large k it is possible that the transverse contribution is convergent: 
since w,C')(&) and U,  do not depend on k the integrand is at most O(1) for large k .  Since we are 
concerned with a long-wavelength theory we can ensure convergence by cutting off k at (say) a 
reciprocal molecular radius. 
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El(k, U )  is equivalent to the free energy change in coupling the material of the dielectric 
to the radiation field. At first sight this is an attractive conclusion since the assumption 
of the weak c.d.c.a. precisely means the elimination of the contribution of the radiation 
field to the dielectric constants. Further we see a reason why we should work in the 
weak c.d.c.a. rather than the c.d.c.a. itself: for that approximation excludes those terms 
which describe external scattering and these should be excluded from a normal-mode 
theory. 

Unfortunately for this interpretation the singularities of the dielectric constants 
E,,,(k, w )  have no physical significance in the theory we developed in I11 and IV; and 
although we work in the weak c.d.c.a. for which (3.5) holds it is clear that in this 
virtual-mode theory E ( W )  must be an approximation to et and E [ .  Moreover (4.14) does 
not agree with the results of the microscopic theory so far reported in 11. In  the case 
of the molecular fluid we have found as reported that the problem is complicated by 
the cluster integral series J, , , (k ,  w )  although expressions for the free energy could be 
obtained without appealing to either the weak c.d.c.a. or the c.d.c.a. itself. We found 
we could achieve a simple equivalent oscillator result like (4.14) (as equation I1 (226)) 
by, and apparently only by, neglecting the J l , t ( k ,  0). This is in the continuum 
approximation of I1 57, but then the hw8 are now energies of the fyee molecules 
coupled neither by the radiation field nor the Coulomb interaction. 

The  case of the molecular crystal is also instructive (Bullough and Obada 1969 a,b). 
There is no obvious reason why the Dzyaloshinskii prescription should not apply to the 
molecular crystal? and in the case of the rigid molecular crystal, which exhibits no 
density fluctuations even at a finite temperature, the result which has been reported is 
clear cut: we obtain (4.14) precisely but find that the energies hwS are again those of the 
free molecules. Since the theory couples free molecules and free field the result is 
exactly the one to expect.: 

Now it is plain that (4.14) reduces to this particular result when but only when 

mt2( w )  - 1 ( = €( w )  - 1) = 4 n n 4  0). (4.15) 

This result ignores the Lorentz field, the local field J,,,(O, U )  and all the fluctuations 
which continue to contribute to the Jl,,(O, U )  (as J (w)  of (3.7) and (3.9)) even in the 
weak c.d.c.a. The  treatment of the Lorentz field in binding-energy theory is a delicate 
question we can discuss when we come to develop the details of I1 later in this series. 
Except in this, the approximations and the result which (4.14) becomes with (4.15) 
coincide with the ‘continuum approximation of I1 57 and its results. The  point here 
then is that the two theories for the molecular fluid agree when but only when both 
theories neglect the fluctuations described by the J,,,(k, 0). 

We might note also the paradoxical consequences of the broad interpretation of 
(4.14) which couples the radiation field to the dielectric coupled by Coulomb inter- 
actions in the weak c.d.c.a. : the poor approximation to the dielectric constant which 
is (4.15) and which omits Coulomb interactions would therefore couple in both 
Coulomb interactions and the radiation field in (4.14) and, since the Coulomb 

t In  a long-wavelength prescription we should perhaps expect to ignore all the effects of 
crystal structure which are on the scale of angstroms: this seems to be precisely the point of 
(4.15). 

t I t  can only be obtained by a thermal decorrelation scheme of the quantal theory analogous 
to  the p.d.a.: decorrelation seems to be essential for an equivalent oscillator result like (4.14). 
Thus we should not expect it when we include all order intermolecular correlation by the 
JL,~(K, U) or 4~). 
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interactions are numerically the most important part of the bulk binding, this poorer 
approximation would give the better estimate of the total bulk binding. 

Another way of looking at the relation between (4.15) and (3.7) which is instructive 
is this. We are concerned in (4.14) with the excitations of E ( W )  which in general are of 
quasi-particle type. If E(W) in the weak c.d.c.a. expression (3.7) is meromorphic it can 
be written in the form (4.15) with .(U) actually replaced by a quasi-particle polar- 
izability (Bullough 1968 b). Since J ( w )  is an infinite series, E ( W )  is not in general 
meromorphic, however, even when only a finite number of discrete energy levels 
contribute to .(U) and cuts from free-particle continuum levels are excluded. Quasi- 
particle arguments like this typify much of the very beautiful work of the Landau 
school: even so, and whether the quasi-particle picture is valid or not, we cannot 
justify the prescription we have used for AF in this 54 this way. 

T o  see this consider the prescription based on terms like (4.1) when, for simplicity, 
T = 0. I n  this case (4.1) is (AGD-$17 p. 146) 

- 
- T r  1; dwk 1 1 1 1 f io(x,  x’; iw) . F(x’, x”; iw) . I I , ( X ” ,  X”’; io )  

277 

. F(x“’, x; iw) dx’l’dx’’ dx‘ dx. (4.16) 
At T = 0 the expression (4.15) for .(U) - 1 will not be changed since the fluctuations 
have been excluded. With this form forE(w) - 1 in the definition (3.22) of II,, (4.16) is 

. F(x”‘, X; iw) dx’” dx” dx’ dx. (4.17) 

We are treating I?, as a function of the coupling constant e’ and are using the fact that 
(4.15) is linear in (e’)2.  I t  is now clear that the succession of terms like (4.17) lose their 
factors v - l  on integration over e’ and constitute the iteration of t  

AE = - k S ; 2 ~ j o d w T r S j I ? ~ ( x , x ’ ; i w ) . F ( r ’ , x ; i w ) d ~ ’ d r  277 (4.18) 

since satisfies (3.28). If we turn the contour in the w plane, include an energy cut-off 
instead of the short-range contribution F,, and perform one integration on x (since 
fi and depend only on x - x’ in virtual-mode theory) we get exactly the equation 
(12b) of 11. Now that equation is exact in virtual-mode theory and the c.d.c.a. 
However, it is clear that we get (4.18) here only because (4.15) is linear in (e’)2.  
Equation (3.7) is a very much more complicated function of (e ’ )2  because the fluctua- 
tions J (w)  depend on .(U) and ( e ’ )2 .  

It is worth remarking here that (4.18) has an elegant interpretation. For this we 
need a generalized function interpretation we have used in the scattering theory (cf. 
Bullough et al. 1968, Bullough and Hynne 1968 and Bullough 1970 c) and will make 
much use of later in this series of papers. We write 

j” a(x- x ’ ) ~ ( x ‘ ,  x; iw) = $w3c-3mt(iw)~ (4.19) 

which on investigation proves to be precisely the convergent part of an otherwise 
divergent integral. The  factor m,(iw) is Of interest here since it will not appear if the 
free-field propagator f is used instead of F. Iff is used the right-hand side of (4.19) is 

I 

t AE and AF are the same at  T = 0. 
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just the radiation reaction (Bullough et al. 1968 a,b) at complex frequency iw. Thus 
the right-hand side of (4.19) with the factor m(iw) is the screened radiation reaction. 
Equation (4.19) in (4.18) enables us to express the binding energy AE in terms of 
E(W) - 1 and the screened radiation reaction.? However, whilst this elegant result is 
exact for virtual-mode theory in the c.d.c.a. it is equivalent to the prescription of this 
$4 for AE only if (4.15) holds. 

We must observe also that in I1 (16) we exhibit a series analogous to the succession 
of terms like (4.1). The  agreement is complete after decorrelation, restoration of the 
coth function of I1 (lo), and appeal to the continuum approximation (4.15). Otherwise 
the series I1 (16) depends explicitly on the intermolecular correlation functions; and 
although these functions are partially an artefact of the Born-Oppenheimer approxi- 
mation underlying the whole theory, some sort of fluctuation terms should appear.$ 

It seems to follow from these several points that the prescription typified by (4.1) 
for AF really should be used with (4.15). If this is so we must conclude that the 
Dzyaloshinskii prescription is an instructive but rather crude prescription for the free 
energy which cannot give better than order-of-magnitude estimates. This raises the 
important question of whether or not the frequency-dependent dielectric constant, or 
the refractive index, is of itself sufficient to determine the long-range part of the free 
energy of a molecular fluid. 

The  answer to this question so far is that the transverse and longitudinal dis- 
persion relations and their generalizations$ for all directions k determine the binding 
energy of the rigid molecular crystal (in the p.d.a.) once the energies of the free 
molecules are known: this is the result like (4.14) reported in Bullough and Obada 
(1969 b) valid for arbitrary k. Then the refractive index does not seem to determine 
the free energy of the molecular fluid to better than a continuum approximation: 
this is the result I1 (22b) and again needs the free molecular energies. We noted in I1 
that closed loop diagrams contributing to the binding energy appear explicitly in the 
expression for the refractive index but cannot be extracted from that quantity. These 
several points must be discussed in detail later. 

The  result (4.14) and the conclusions we derive from it are the main results of this 
paper V. We have also introduced the important complex dielectric constant approxi- 
mation (c.d.c.a.) in $3 and demonstrated the equivalence of the virtual-mode theory of 
the response function in the c.d.c.a. to the translationally invariant form of the long- 
wavelength (virtual) photon approximation of Dzyaloshinskii et al. ( 1961). We were 
obliged to use the weak c.d.c.a. to reach (4.14): this neglects all contributions of the 
radiation field to the thermal fluctuations but retains the Coulomb interactions. 
Before this in $2 we showed that the whole virtual-mode theory, and indeed the whole 
response theory of I11 and IV, could be extended to a system of more than one 
component. This now completes our analysis based on the fundamental integral 

t The first-order Lamb shift of I1 (21) can be expressed in exactly the same way in terms of 
the free-particle polarizability ~ ( w )  and the unscreened radiation reaction. The details of the 
processes screening the radiation reaction are reported by Hynne (1 970). 

$Although equations (4.16)-(4.18) assume T = 0, this is a device to eliminate the 
coth &w/2kBT. I t  should not be taken to eliminate the fluctuations or the intermolecular 
correlation. If disorder of this type does not obtain, the dielectric constants are those of a 
crystal and our results for this (Bullough and Obada 1969 a,b) are applicable here. 

§ I t  is not possible to consider merely transverse and longitudinal dispersion relations in the 
arbitrary crystal and not even in the cubic crystal for all k (Bullough and Obada 1969 a). 
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equation I11 (2.1) of the microscopic theory. I n  the final section of this paper we 
summarize the main results and conclusions of the three connected papers, 111, IV  
and V. 

5. Summary of main results and conclusions 
The papers 111, IV and V of this series on ‘Many-body optics’ are devoted in the 

first place to an exhaustive analysis of the solution of the fundamental integral 
equation of the many-body optical theory. This integral equation is the classical 
equation I11 (2.1) which will be justified by quantal theory later in this series. It was 
introduced and partially solved for transverse and longitudinal solutions in I: in 
order to show that these solutions and the associated dispersion relations derived in I 
were correct we still had to show that these results were compatible with the optical 
extinction theorem due in the first instance to Ewald (1912). 

We do considerably more in the papers 111, IV and V than show that all of the 
results of I are indeed consistent with this extinction theorem. We achieve a number 
of explicit formulae which describe electromagnetic processes in a molecular fluid in a 
much more general context that that of the introductory paper I. That paper was 
concerned only with the interaction of the system with light. Now we have considered 
the interaction of the system with an arbitrary externally imposed electromagnetic 
field and we have also considered the balance of the system when there is no external 
probe. I n  this summary we attempt a synthesis of the material we have examined so 
far and the conclusions we have reached: we do not follow the sequence of develop- 
ment adopted in the papers themselves for, because of the complication of the argu- 
ment, each section of each paper is already summarized at the end of that particular 
section. This leaves us free to achieve the final synthesis here. 

The  simplest part of the theory is that part of it which deliberately ignores the 
optical extinction theorem. This is the ‘virtual-mode theory’ of IV 52. It is a trans- 
lationally invariant theory with the usual structure of conventional linear response 
theory. In  particular we can define (k, w)-dependent transverse (t) and longitudinal 
(1) dielectric constants for an isotropic molecular fluid of one or more components. 
For a one-component system these take the form 

which mimics by intent the form of the dispersion relation I (4.11~) for the transverse 
refractive index m,(w). The .Il,, are complicated expansions in terms of cluster 
integrals. They may be interpreted as intermolecular multiple scattering processes 
and are implicitly obtained to all orders: the structure and properties of this series will 
be discussed later. The  result (5.1) and some discussion of the J l , ,  appears already 
in 11. 

I n  terms of these dielectric constants the longitudinal response function in dipole 
density is (see I11 3.15) 

and the transverse response is (see IV (2.8)) 

(5.2u) 

(5.2b) 
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The response functions have the two dispersion relations of I as their surfaces of 
singularity: in simplest form these surfaces are poles for fixed k but can be more 
complicated singularities. The  form of the response functions does not change as the 
number of components changes: the formulae for El,Jk, w )  do change (see V-$2). 
The  longitudinal response function takes the form due to Nozikres and Pines (1958), 
for example, but it is new for the molecular fluid: we believe that even the form of 
(521) for the transverse response is new and it is certainly new for the molecular fluid. 

The dispersion relations could be taken to be normal-mode dispersion relations 
within this virtual-mode theory: this is the usual interpretation. But already this may 
not be a consistent interpretation since the boundary conditions are outgoing and the 
wave vectors of these ‘normal modes’ are complex due to external scattering. We do 
not consider the delicate problem of external scattering in the papers 111, IV and V:  it 
will be considered later. The  big problem of the virtual-mode theory however is that 
(5.21) vanishes when K = K O  = w c - l :  thus although the virtual-mode theory is a 
linear response theory it does not include the response to externally imposed light, 
This problem has not been considered before in linear response theory. 

When the probe is light the theory of the integral equation is exactly that developed 
but not completed in I ;  and the solution to the difficulty is exactly contained in the 
optical extinction theorem. We analyse the integral equation, which is the expression 
of this theorem, when the probe is light and the fluid occupies an infinite slab-like 
region V of finite width. We find that light couples to the system through the surface: 
a surface is therefore an essential feature of the region V which accordingly must be 
finite. We find that the integral equation of the optical extinction theorem is exactly 
the missing linear response relation: ?e exhibit it as such in I11 (2.15) in the particular 
case when the wave vector direction k is along the axis of the slab. It displays all the 
features of macroscopic Maxwell theory but we assume no surface boundary conditions: 
again the boundary conditions are outgoing conditions at infinity. The  generalization 
in IV  93 to the case of k oblique to the slab axis also confirms the Maxwell theory. 
This important result shows that all of the optical response, whether there is absorp- 
tion inside V or external scattering or reflection outside V ,  is described by a total 
response function depending only on the frequency U,  the surface geometry, and the 
transverse refractive index m,(w).  

The  analysis further shows that the transverse solutions proposed in I are correct 
solutions of the fundamental integral equation : the transverse dispersion relation 
which coincides with the singular surfaces of Et(k, w )  in (5.1) is now associated with a 
linear response theory and not a normal-mode theory. A single mode of light of 
amplitude E, energy h~ and wave number K O  = U C - ~  induces two modes, one 
forward-going the other backward-going inside V. The linear response which is the 
extinction theorem fixes the amplitudes of these two modes uniquely. Comparable 
analysis shows further that the longitudinal dispersion relation is correct, and indeed 
that with k along the axis of V the longitudinal modes are normal ?odes: this is so 
because the extinction theorem vanishes in this geometry. When k is oblique the 
extinction theorem does not disappear. Then we find that the longitudinal modes of I 
can run if, but only if, they are balanced by an external transverse free field (light) 
outside the system. This seems to mean that the longitudinal modes can be excited by 
light and constitute the linear _response to this. The  relationship between the singular 
case of & axial and the case of k oblique in Vis not clear however : nor is the process of 
energy transport across the surface in the oblique case. 
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Whilst this analysis otherwise wholly established the validity of the results of I it 
poses the awkward problem of making itself compatible with the virtual-mode theory. 
For any realizable system which responds to an arbitrary electromagnetic field, in 
particular a molecular fluid excited by an incident charged particle, is certainly finite. 
The  idea of the solution is simple but its expression is complicated. The  solution is 
that, as long as there is no light in the external probe, the surface of the system induces 
additional transverse modes throughout the interior of the whole region V occupied by 
the fluid: these modes travel at the velocity c/m,(w) in which m,(w) is a root of the 
transverse dispersion relation at frequency w. These modes are indistinguishable from 
the transverse modes induced by light of the same energy: bulk modes of this type 
induced by the surface in the absence of light have not been reported before however. 

The  situation may be understood as follows: a mode of the electromagnet probe 
labelled by ( k ,  w )  induces a dipole response labelled by (k ,  w ) :  this induces a free 
field (light) of frequency w inside V because of the surface integral of the extinction 
theorem. Since light cannot run inside the dielectric in V ,  this induces transverse 
optical modes of frequency w inside V :  the mechanism is that the transverse optical 
modes induce a free field inside V because of the surface integral of the extinction 
theorem: the two free fields inside V exactly balance each other even though they are 
associated with dipole modes of different wave number; and they can do this 
because they have the same energy. 

We call the modes labelled by ( k ,  w )  ‘virtual modes’: they do not satisfy a dis- 
persion relation. We call the optical modes they induce ‘real modes’ : they do satisfy a 
dispersion relation. When P is a slab two transverse modes of wave number m,(w)k, 
accompany each virtual mode labelled by (k ,  w ) .  The amplitudes of all the induced 
modes are fixed by the extinction theorem. If the probe contains light we merely add 
the solutions since the integral equation is linear. 

The  response functions for the virtual modes are exactly (5.2) : these relations 
contain k ,  w and the El,t(k, w )  only. The  total dipole response is much more com- 
plicated: it takes the form exhibited in IV (2.22) for the transverse response and the 
form IV (3.6) for the longitudinal response: it was first exhibited in I1 (2.8 a$). 
Only the real response depends on the surface geometry: this response also depends 
on theEl,,(k, w ) ,  k ,  w and m,”(w). It is significant that transverse real modes accompany 
longitudinal virtual modes. These must describe the emission of light from the 
surface even though the incident longitudinal probe cannot be light. Likewise the 
additional real response in the total transverse response must describe the emission of 
light as Cerenkov radiation when the transverse probe is not light. We find that the 
virtual transverse response dominates the total transverse response in the non- 
relativistic region; that the real response dominates in the relativistic region; and on 
the free-field energy shell so that the probe is light the transverse response vanishes 
whilst the real response is the optical response described already. We thus have a 
rather beautiful synthesis of the virtual mode and optical response theories.? 

From this synthesis we can still isolate the virtual-mode theory: we simply 
neglect the real responses in the theory. We expect to identify the virtual-mode 
theory as the unique translationally invariant part of the total response theory, and to 
find that any normal modes are the modes satisfying dispersion relations in the virtual- 
mode theory. This identification is confirmed by a search for normal modes within 
the theory of the total response: we find there are no normal modes in any finite 

t Which we believe, and contrary to the remark in I $1, does now provide an ‘all-embracing 
answer’ to the question posed by the two different approaches contrasted there. 



772 R. K.  Bullough 

region like the slab V in the terms of the total response theory: there are formal 
normal modes in an infinite system only by appeal to a device IV (2.32) which averages 
out the optical extinction theorem: moreover these exist only at the expense of 
causality, and although this seems natural for a normal-mode theory, the causal rather 
than acausal optical Green function will emerge from the quantal basis to the theory 
which is to be presented later in this series. This is also an objection to the use of 
acausal Green functions in the normal modes of the virtual-mode theory: thus this 
translationally invariant theory may still be inconsistent through optical scattering. 
We conclude that normal modes certainly cannot be constructed without some change 
in the boundary conditions: this could mean for example, some change in or reinterpre- 
tation of the commutation relations of the quantal theory.? 

The  virtual-mode theory summarized by equations (5.1) and (5.2) is both trans- 
lationally invariant and surface-independent : this is why it is relatively simple. In  the 
paper V we examine it in two forms of the complex dielectric constant approximation 
(c.d.c.a.): the c.d.c.a. is valid when K < l - l ,  k ,  < t - l  and 1 is an intermolecular 
correlation length. I n  the c.d.c.a. the cL,$(k,  w )  are independent of k and coincide 
with m,”(w): we define a complex dielectric constant E ( W )  to represent all three of 
these quantities in the c.d.c.a. In  the c.d.c.a. proper E ( W )  retains frequency-dependent 
contributions from the transverse contributions to the intermolecular interactions in 
the cluster integrals in the Jl , , (k ,  0): these two series JL and Jt are now equal and 
independent of k but are complex through the transverse contributions : they contain 
the comprehensive theory of optical scattering which has been reported (Bullough 
et al. 1968 and Bullough and Hynne 1968). 

I n  the paper V we show that the virtual-mode linear response theory coincides 
with that of the long-wavelength virtual photon theory of Dzyaloshinskii et al. (1961) 
in the c.d.c.a. Then we show that, in the weaker version of the c.d.c.a. which wholly 
rejects transverse contributions to the JL, ,(K, U )  but retains Coulomb interactions, the 
Dzyaloshinskii prescription for the free energy of a molecular fluid can be interpreted 
as the coupling of the radiation field to a dielectric coupled only by intermolecular 
Coulomb interactions. This is an appealing result with the particular merit that it 
shows there are natural quantized oscillators in both coupled and uncoupled systems 
of the virtual-mode theory: the oscillators of the coupled system are exactly those one 
would obtain by quantizing the normal modes of the virtual-mode theory in the 
weak c.d.c.a. as is particularly plain from equation V (4.14). 

In  detail neither the result in this form, nor the prescription for the free energy is 
the same as results which can be obtained from the microscopic quantal theory and 
which are reported in 11. This theory is wholly consistent with the many-body optical 
theory as it has been presented in detail so far in this series: the argument takes the free 
molecules and free field as reference states and includes the Coulomb interactions in 
the computed free energy shift; but the result is apparently expressible in terms of 
equivalent oscillators only by working in the ‘continuum approximation’ described in 
11. We can achieve the same result from the prescription of Dzyaloshinskii by the 
work of this paper V only by assuming 

€ ( U )  - 1 = 4nncc(o). (5.3) 
This assumption is a drastic additional restriction of even the weak c.d.c.a. for it 
ignores all the cluster integrals (in the J(w) of (3.7)) which appear in the weak c.d.c.a.; 
in addition it ignores the Lorentz field contribution. The  precise role of this in any 

t See the author’s lectures at Flagstaff (Bullough 1970 c). 
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‘continuum approximation’ like that of I1 or that of (5.3) above needs rather careful 
discussion; but it is certainly clear that the two theories thus agree in approximations 
which neglect all thermal fluctuations and do not seem to do so otherwise. 

We can already conclude from the results of the series of papers so far that the 
frequency-dependent dielectric constant (or the refractive index) is insufficient to 
describe the free energy density of a molecular fluid to better than a continuum 
approximation and hence to order of magnitude. 

The  main conclusion of the three papers 111, IV and V is that a consistent descrip- 
tion of the interaction of a molecular fluid with an arbitrary electromagnetic field is 
possible if, but only if, very precise attention is given to  the role of the surface of the 
system in the theory. 

The  analysis of these three papers leaves outstanding from I only the problem of 
the effect of the breakdown of translational invariance on the intermolecular correla- 
tion functions: we look at this problem later. It is plain that the urgent need now is to 
find a quantal derivation of the fundamental classical integral equation I (2.1) and 
I11 (2.1): this has been reported (Bullough et al. 1968, Obada and Bullough 1969) and 
the presentation of the argument is the task of the next two papers. 

Although we have carried intermolecular correlation through the theory in the 
Jl,,(k, U) we have not looked closely at the structure of these quantities: in the 
papers which immediately follow we do this as part of a connected argument which 
starts with an interaction Hamiltonian with quantized field (namely the equation (1) 
of 11), regains the classical equation and then exhibits the cluster expansion of the 
J, , , (k ,  w) in detailin the course of reaching the expression (5.1) itself again for the di- 
electric constants. We can then go on to the delicate problem of external scattering. 
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